Nanostructured arrays of doped semiconductors for IR nanophotonics

<u>T. Taliercio</u>,¹⁾ V. Ntsame Guilengui,¹⁾ J. Léon,²⁾

1) Institut d'Electronique du Sud, Université Montpellier – CNRS (France)

2) Laboratoire Charles Coulomb, Université Montpellier – CNRS (France)

○ Surface plasmon is an hot topic Essential works on noble metals (> 36000 articles) \bigcirc Visible range \bigcirc Realization ○ Surface plasmon on doped semiconductors (> 130 articles) • Few works on periodic arrays of doped SC (NIM *Nat.Mat. 6, 946 (07*)) O Interest of highly doped semiconductors for IR applications \bigcirc Adjust the plasma frequency • Work around the plasma frequency

○ We propose an analytic model which describes the light-matter coupling with arrays of doped/undoped semiconductors

Surface plasmon polariton

How to circumvent this difficulty?

Normalization
All frequencies are normalized to the plasma frequency
$$\omega_p$$
, the wavenumber to $k_p = \omega_p/c$, the lengths to k_p^{-1} , and time to ω_p^{-1} .

Resolving Maxwell equations in TM polarization

$$\varepsilon_{b}k_{a}\tan(a\cdot k_{a}/2) + \varepsilon_{a}k_{b}\left(1 - \frac{1}{\omega(\omega + i\gamma)}\right)\tan(b\cdot k_{b}/2) = 0$$

$$\varepsilon_{a}k_{b}\left(1 - \frac{1}{\omega(\omega + i\gamma)}\right)\tan(a\cdot k_{a}/2) + \varepsilon_{b}k_{a}\tan(b\cdot k_{b}/2) = 0$$

The main approximation a and b < k_p^{-1} \downarrow tan (a $k_a / 2$) ~ a $k_a / 2$ and tan (b $k_b / 2$) ~ b $k_b / 2$

$$k_a^2 = \varepsilon_a (\omega^2 - 1) - q^2$$
$$k_b^2 = \varepsilon_b \omega^2 - q^2$$

We obtain the relation dispersion for the wave vector **q**

$$q^2 = \varepsilon_{eff} \omega^2$$

Main results

 $q^2 = \varepsilon_{eff} \omega^2$ In TM polarization $\varepsilon_{eff} = \varepsilon_{TM} \frac{\omega(\omega + i\gamma) - 1}{\omega(\omega + i\gamma) - \omega^2}$ $\varepsilon_{TM} = \frac{(a+b)\varepsilon_a\varepsilon_b}{a\varepsilon_b + b\varepsilon}$

$$\omega_{sp}^2 = \frac{b\varepsilon_a}{a\varepsilon_b + b\varepsilon_a}$$

Ionic-crystal behaviour

In TE polarization

$$\varepsilon_{eff} = \varepsilon_{TE} \left(1 - \frac{\omega_t^2}{\omega(\omega + i\gamma)} \right)$$

$$\mathcal{E}_{TE} = \frac{\left(a\mathcal{E}_a + b\mathcal{E}_b\right)}{a+b}$$

$$\omega_{pp}^2 = \frac{a\varepsilon_a}{a\varepsilon_a + b\varepsilon_b}$$

Metal behaviour

Model vs Simulation

All simulations are realized with the following parameters : ω_p = 3.42 10¹⁴ rad/s, $\varepsilon_a = \varepsilon_b = 11.7$, a = b = 0.2 µm, h = 1 µm and $\gamma = 10^{13}$ rad/s

J.Léon PRB 82 195301 (2010)

Model vs Simulation in TM polarization

Huge light-matter coupling with a photonic band gap $\Delta \omega = 0.3$ Good agreement between model & numerical simulation

Model vs Simulation in TE polarization

• Metallic behaviour

Possibility to define a plasma frequency for a pseudo-volume plasmon

Varying the geometrical parameters in TM incident plane wave

 \circ The larger the metal (a), the larger the photonic band gap $\Delta \omega$.

10

Varying the geometrical parameters in TE incident plane wave

11

 \bigcirc Validation of the model in the long-wave limit

○ In TM polarization the metamaterial is like a ionic-crystal

○ In TE polarization the metamaterial is like a metal

- \bigcirc Design structures with the expected $\Delta \omega$
- Beyond the long-wave limit it is necessary to use the complete model
- Future works:
 - **OExploring the possibilities of this model**
 - **OExperimental demonstrations**

