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Our motivations

O Surface plasmon is an hot topic
O Essential works on noble metals (> 36000 articles)
O Visible range

O Realization

O Surface plasmon on doped semiconductors (> 130 articles)

O Few works on periodic arrays of doped SC (NIM Nat.Mat. 6, 946 (07))

O Interest of highly doped semiconductors for IR applications
O Adjust the plasma frequency

O Work around the plasma frequency

O We propose an analytic model which describes the light-matter
coupling with arrays of doped/undoped semiconductors




Surface plasmon polariton
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X
Light-matter coupling opens photonic band gap

In the case of surface plasmon polariton, the light-matter coupling is huge. @

This 2D system is difficult to excite optically. Q

How to circumvent this difficulty?



Problem definition
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n,, doped semiconductor

Normalization
All frequencies are normalized to the plasma frequency o
wavenumber to k, = w,/c, the lengths to k,, and time to w,™.
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Resolving Maxwell equations in TM polarization
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£k, (1— - (w1+ i}/)j tan(a-k, /2)+ .k, tan(b-k, /2)

The main approximation a and b < kp'1

N2
tan (ak, /2)~ak,/2and tan (b k, /2) ~ bk, /2

k2 = 5a(a)2 —1)—q2
k: = g,0° —°

We obtain the relation dispersion for the wave vector q




Main results

In TM polarization In TE polarization

lonic-crystal behaviour Metal behaviour




Model vs Simulation

All simulations are realized with the following parameters :
w,= 3.42 10* rad/s, g, = ¢, = 11.7,a=b = 0.2 pm, h =1 pm and
y = 103 rad/s

n,, undoped
semiconductor

n,, doped semiconductor
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o Good agreement between model & numerical simulation




Model vs Simulation in TE polarization
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o Metallic behaviour

o Possibility to define a plasma frequency for a pseudo-volume plasmon



Varying the geometrical parameters in TM incident plane wave
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o The smaller the metal (a), the smaller the photonic band gap Aw.
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o The larger the metal (a), the larger the photonic band gap Aw.




Varying the geometrical parameters in TE incident plane wave
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o The smaller the metal (a), the lower the pseudo-plasma frequency
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o The larger the metal (a), the higher the pseudo-plasma frequency




Conclusion

O Validation of the model in the long-wave limit
O In TM polarization the metamaterial is like a ionic-crystal
O In TE polarization the metamaterial is like a metal
O Design structures with the expected A®
O Beyond the long-wave limit it is necessary to use the complete model
O Future works:
OExploring the possibilities of this model

OExperimental demonstrations
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