

MPUS UAR. BELLATERRA, BARCELON

Effect of phonon confinement on heat dissipation in ridges

P.-O. Chapuis^{1*}, A. Shchepetov^{2*,} M. Prunnila², L. Schneider¹, S. Lasko², J. Ahopelto², C.M. Sotomayor Torres^{1,3}

¹Institut Catala de Nanotecnologia (CIN2=ICN+CSIC), Bellaterra (Barcelona), Spain ²VTT Microelectronics, Espoo, Finland ³Institució Catalana de Recerca e Estudis Avaçats (ICREA), Barcelona, Spain

ImagineNano, Bilbao, April 2011

Outline

de Nanotecnologia

Phonon transport confinement effects

- Measuring the temperature in ridge samples
- Thermal conductance of silicon ridges
- Conclusion/Perspectives

Phonon lengthscales

• Acoustic phonons are the main heat carriers in nonmetals

• Vary temperature to change the average MFP

Phonon transport confinement effects

de Nanotecnologia

Outline

de Nanotecnologia

- Phonon transport confinement effects
- Measuring the temperature in ridge samples
- Thermal conductance of silicon ridges
- Conclusion/Perspectives

• Wire temperature = f (heat flux in the sample)

Wire temperature measurement

ature

Measuring the ridge temperature

Calculation of the conductance G_{th}

• The conductance is obtained from

$$G_{th} = P/\Delta T$$

= $F_{geometry} RI^2 / \Delta T$

- F_{geometry} ? take F = 1 as upper limit
- Pads are heat baths. T_{wire} is not constant along its length.

Outline

de Nanotecnologia

- Phonon transport confinement effects
- Measuring the temperature in ridge samples
- Thermal conductance of silicon ridges
- Conclusion/Perspectives

Thermal conductances of Si ridges

Institut Català de Nanotecnologia

Thermal conductances of Si ridges

Chapuis et al, Proceedings of THERMINIC 2010

💽 ICN 🛛

Institut Català de Nanotecnologia

Conclusion/Perspectives

- The thermal conductance of silicon ridges has been measured for ridges of thickness between 100-450 nm.
- Its temperature dependence (i.e. Knudsen number) was observed
- •Compared to Fourier law a two orders of magnitude decrease was measured and ascribed to confinement
- At least one order of magnitude difference with the ballistic transport prediction
- Confirmation with other samples using the 3ω method
- Lower temperatures → interplay with strong wave effect
 Higher temperatures → larger range of Knudsen number
- Impact of roughness
- Refinement of the associated theory in progress

Thank you for your attention !

Questions ?

