Nanosensors for structural monitoring in civil engineering

New insight on promising carbon nanotubes devices

B. Lebental¹ E. Norman² L. Gorintin³ P. Renaux⁴
P. Bondavalli³ C. S. Cojocaru² A. Ghis⁴

¹Université Paris-EST, IFSTTAR, Paris, 75015, FRANCE

²LPICM, Ecole Polytechnique, Palaiseau, 91128, France

³Nanocarb Laboratory, Thales R&T, Palaiseau, 91767, FRANCE

⁴CEA-LETI, Minatec Campus, Grenoble, 38000, FRANCE

lebental@lcpc.fr

Nanotechnologies in the construction sector : why?

- Nanotechnologies :
 - Already plenty of (niche) products
 - Global market : 2500 G€ in 2015
 - ⇒ Goal : finding large market opportunities

1. Lux Research Inc., 2010; 2. Letournel, INSEE, 2009

- Construction sector :
 - More than 10 % of European GDP
 - Toward sustainability...and cost reduction
 - ⇒ A new priority : improving structural service expectancy

lebental@lcpc.fr

Concrete materials : degradations and durability

- Various degradation processes
 - Corrosions, cracks, swelling...
 - Origin : particules and gas transport within microporosity
- ⇒ To control durability, one needs to MONITOR MICROPOROSITY

1. Baroghel-Bouny, Tech. Ingénieur, 2005

3/13

lebental@lcpc.fr

Nanosensors in civil engineering

Monitoring microporosity with nanosensors

- Current monitoring solutions : large sensors with mm resolution averaging the microporosity
- \Rightarrow Challenge : to obtain pore by pore (μm) resolution
- \Rightarrow Solution : Monitoring with 1 μm size nanosensors
 - We consider two parameters varying during service life
 - $\bullet~$ Pore size : 10 nm to 10 μm
 - Humidity : 70 % to 100 % relative humidity (RH)
- \Rightarrow determine gaseous/ionic transport parameters \Rightarrow **Durability**

Carbon nanotubes based ultrasonic transducer

- Device concept¹:
 - Suspended membrane of aligned SWNT actuated capacitively
 - $\bullet~1~\mu m$ characteristic size
 - $\Rightarrow~$ More than 1 range of magnitude smaller than existing US transducers

1. B. Lebental et al., 2008, Patents EN 08 57927 and EN 08 57928

Device fabrication process

- Aligned deposition of SWNT
- SWNT anchoring
- Membrane release

Large amplitudes of vibrations and low thickness

- Demonstration of membrane vibrations by laser vibrometry¹
 - under AC voltage+DC bias
 - from 100 kHz to 5 MHz

1. B. Lebental et al., submitted to Nanotechnology 2011

Large amplitudes of vibrations and low thickness

• Demonstration of membrane vibrations by laser vibrometry

- under AC voltage+DC bias
- from 100 kHz to 5 MHz
- \Rightarrow Amplitudes up to 5 nm peak to peak

 \Rightarrow explained by low thickness : 10,7 nm typically; down to 1.5 nm

Applicative relevance

- The larger the vibrations, the easier they are to detect !
- The thinner the membrane, the more sensitive it is to pore features
- \Rightarrow Good candidate for in-situ monitoring of pore size
- \Rightarrow Validation by modeling 1

1. B. Lebental et al. EJECE 2011, 15, 649

Carbon nanotubes FET

- Measuring moisture content in an air-filled pore
 - CNTFET known to be highly sensitive to humidity
 - \Rightarrow CNTFET based humidity sensor
 - $\Rightarrow\,$ Fabrication by low-density spray-coating of SWNT atop 100 $\,$ nm thermal SiO_2 $\,$

Hysteresis sensitivity to humidity

• Electrical features reproducibly sensitive to humidity

- Ion, Ioff, Hysteresis,...
- Attributed to adsorption on silicon and on metal
- Especially at high humidity

 \Rightarrow Well suited for high RH environment such as concrete

Conclusions

- Fabrication and evaluation of two promising sensing elements
 - Vibrating CNT membranes for ultrasonic micropore monitoring
 - CNTFET for humidity measurements in micropores
- Prospects :
 - Integration into embeddable sensing units : smart aggregates
 - Validation in the target environment
- A whole range of novel sensing opportunities !!!

Acknowledgments

- Thank you for your attention !
- Thanks to all my coworkers!
 - CEA-LETI, Minatec : Anne Ghis, Jean-Marc Fabbri, Nawres Sridi, Ariane Meguekam Sado, Philippe Renaux, Nicolas CHevalier, Elisabeth Delevoye, Jean-Christophe Gabriel
 - LPICM, Ecole Polytechnique (+NanoCarb) : Evgeny Norman, Costel Cojoacaru, Louis Gorintin, Paolo Bondavalli
 - IFSTTAR Paris (LCPC) : Frédéric Bourquin, Jean-Marie Caussignac