

NANO-WIRE ARRAYS OF BI2TE3 FOR THERMOELECTRIC APPLICATIONS

<u>Olga Caballero-Calero¹</u>, Pablo Díaz-Chao¹, Biswapriya Deb², Yoshikazu Shinohara², Marisol Martín-González¹

¹IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain ² NIMS National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 605-0047, Japan.

NANOTHERMA

Thermoelectric Materials

- Materials which present <u>strong</u> thermoelectric effect
 - An electric potential creates a temperature difference
 - A temperature difference creates an electric potential.
 - Figure of Merit ZT

$$ZT = \frac{S^2 \sigma}{\kappa} T$$

- **S** = Seebeck coefficient: high in semiconductors
- σ = Electrical conductivity : high in metals
- κ = Thermal conductivity : low in semiconductors
- Semiconductor with relative high ZT: Bismuth Telluride
 - 1954 : First report of Bi₂Te₃ as an effective thermoelectric material
 - High mean atomic weight
 - Low lattice conductivity
 - Low melting temperature 585 °C

Thermoelectric Materials

- ZT Bismuth Telluride ~ 1
 - Efficiency of 10%

C.B. Vining. Solutions Summit Nanotech. and New Mater. **8** 2 83 – 85 (2008)

- Need of improvement of the figure of merit (ZT)
 - To be competitive ZT ~ 3!
 - Unusual band structures (S ↑)
 DiSalvo, Badding, Kanatzidis, et al
 - Control over the disorder (S↑, K↓)
 Slack, McMillan, Pohl, et al.

- Quantum confined structures (S \uparrow , $\kappa\downarrow$)
 - Hicks and Dresselhaus, Phys. Rev. B, 47 12727 12731 (1993)

Thermoelectric Materials: Low Dimensionality

- Theoretical Prediction: M.S. Dresselhaus et al.
 - Microscale Thermophysical Engineering **3** 89 (1999)

Dependence of $Z_{2D}T$ and $Z_{1D}T$ on quantum-well and quantum-wire widths d_W for Bi_2Te_3

$$ZT = \frac{S^2 \sigma}{\kappa} T$$

- Effects of reduced dimensionality
 - Higher **S:** Quantum confinement effect.
 - No entanglement between S and o
 - Decrease in κ : Introduction of interphases
- First experimental demonstration
 - R. Venkatasubramanian, Nature 413 (6856) 597 (2001)

Venkatasubramanian, Nature 413 (6856) 597 (2001)

Electrochemical Deposition: Films BizTez

- Our approach: Fabrication by Electrochemical deposition
 - Room Temperature fabrication, low cost, No vacuum, high deposition rates, scalability and easy transfer to the industry.
 - Bulk electrodeposition since 1993 Takahashi et al; 1996 Magri et al

Electrochemical Deposition: Films BizTez

- Pourbaix- type diagram for the electrodeposition of Bi_2Te_3
 - Termodynamic stability of the dominant species as a function of pH and potential
 - We need to work at a pH and potential at which both species are soluble.

M. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands and A.M. Stacy, Journal of the Electrochemical Society 149 (2002), p. C546.

 $3 \text{ HTeO}_2^+ + 2 \text{ Bi}_{3^+} + 18e^- + 9\text{H}^+ \rightarrow \text{Bi}_2\text{Te}_3(s) + 6 \text{ H}_2\text{O}$

Induced electrochemical reduction 3 HTeO₂⁺ 12 e⁻ + 9H⁺ \rightarrow Te⁰ + 6H₂O

Electrochemical Deposition: Films Biz Tez

Electrodeposition Mechanism

3 HTeO₂⁺ +2 Bi³⁺ + 18e⁻ + 9H⁺ \rightarrow Bi₂Te₃ (s) + 6 H₂O Induced electrochemical reduction 3 HTeO₂⁺ 12 e⁻ + 9H⁺ \rightarrow Te⁰ + 6H₂O

Reaction between the Te⁰ at the electrode and the Bi³⁺

Electrochemical Deposition: Films Biz Tez Electrodeposition Mechanism

a) 3 HTeO₂⁺ 12 e⁻ + 9H⁺ \rightarrow Te⁰ + 6H₂O

b) 2 Bi³⁺+ 3Te⁰ + 6e⁻⁺ \rightarrow Bi₂Te₃

 $3 \text{ HTeO}_2^+ + 2 \text{ Bi}_{3^+} + 18e^- + 9\text{H}^+ \rightarrow \text{Bi}_2\text{Te}_3(s) + 6 \text{ H}_2\text{O}$

Thickness of the films: Faraday's Law

 $m = Q \cdot M / (F \cdot z)$

m = mass liberated at the electrode

Q = Charge. We record I vs t, thus $Q = \int I dt$

M = molar mass

- F = Faraday's 96485 C·mol⁻¹
- z = "valence" of the reaction, 18 in our case

Electrochemical Deposition: Films Bi₂Te₃ Optimization of films grown by electrochemical deposition.

- Final Aim: Preferential crystal orientation
 - Higher thermoelectrical efficiency: c-axis paralell substrate
- Best results: 60 mV applied potential
- Thermal treatments to improve crystal orientation.

- Preliminar measurements
 - Four probe conductivity

um

- Further optimizations
 - Use of aditives
 - Problems with adhesion
 - Different substrates used (Au, Pt, Ag...)
 - Different concentrations
 - Preferential crystal orientation
 - C-axis paralell to the substrate

Electrochemical Deposition: Nanowires

- Matrix: Anodic porous alumina
 - Fabrication process in the laboratory. Also commercial available
 - Hexagonal ordering of the pores, tunabilityof the pore diameter (~ 9 300 nm), porosity up to 50%
 - Electrical insulator and Thermal insulator
 - E_{gap} = 7.4 eV
 - κ = 1.7 W / m·K at 300 K
 - Electrodeposition until overgrowth

Electrochemical Deposition: Nanowires

- Bi_2Te_3 wires from 200 to 20 nm diameter.
 - Characterization techinques
 - Actually: SEM, XRD
 - Future:

OTHERM

- AFM electrical measurements
- Photoacoustic techniques
 - Thermal conductivity
- Raman Microscope.
- External collaborations.

Alumina 200 nm

(110)

Conclusions and Future Work

- Films of Bi₂Te₃
 - Good reproducibility of the films
 - C-axis paralell to the substrate.
- Nanowires of Bi₂Te₃
 - Not direct transference between film growth and nanowires.
 - Ionic diffusion different in the nanopores.
 - Room for improvement
 - ECALE, pulsed deposition, additives, etc.
 - Modification of experimental setups available to measure their properties is in process.

THANK YOU

