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1.1.- Introduction: Bohmian mechanics 

Playing with the many-particle Schrodinger equation,
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Look for a continuity equation:
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Define a velocity:

Define a Bohmian trajectory:  
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1.1- Introduction: Bohmian mechanics

…By construction, Bohmian mechanics reproduce all ensemble results.

Main criticism against Bohmian mechanics

y p

“…In any case, the basic reason for not paying attention to the
Bohm approach is not some sort of ideological rigidity, but
much simpler It is just that we are all too busy with our ownmuch simpler…It is just that we are all too busy with our own
work to spend time on something that doesn’t seem likely to
help us make progress with our real problems”. 

S W i b ( i i i i h Sh ll G ld i )Steven Weinberg (private comunication with Shelly Goldstein)
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1.2.- Introduction: the many body problem The many 
body problem
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What is the equation satisfied by this single-particle wave-function ?



1.2.- Introduction: the many body problem The many 
body problem
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[X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]

1st An exact procedure for computing many-particle Bohmian trajectories

Good points :

1 An exact procedure for computing many particle Bohmian trajectories

2rd The correlations are introduced into the time-dependent potentials

3th The interacting potential from (a classical-like) Bohmian trajectories

p p

th h i l i l f l i l l i4th There is a real potential to account for “non-classical” correlations

5th There is a imaginary potential to account for non-conserving norms
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6st The “N”D TDSE can be decomposed into 1D, 2D, 3D TDSE equations



1.2.- Introduction: the many body problem The many 
body problem
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B d i t
[X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]

The terms G and J depends on the many-particle wave-function

Bad points :

p y p
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A similar difficulty found in the DFT (or TD-DFT) .....



1.3.- Introduction: time-dependent correlations Time-dependent 
correlations

Quantum Noise:                                                                  
I(t)

( ) ( )I t I t I ( ) ( )I t I t I  
Fluctuations

  t t
Autocorrelation

  2 1t t
  R( )= I(t) I(t+ )

Fourier transform   



 -j2 fS(f)= R( ) e d

( 0)IS wFano Factor F 
 

-

2· ·
Fano Factor F

q I 

B t ti B h i h i l d l ti lt
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…By construction, Bohmian mechanics can also reproduce correlation results.
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3.2.- Qauntum Monte Carlos Scheme

Quantum Monte Carlo scheme for current computation:

,, 1 1
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G-distribution: initial position of Bohmian trajectory

H-distribution: initial energy of the wave-packet
1 1g g hg h  
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3.2.- DC current

DC current for a Resonant Tunneling Device (RTD)
 

1.4
 1e- mean-field 1e- many-fields 

 

[G. Albareda et al. Phys. Rev. B 79, 075315 (2009)]
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Electron transport beyond the standard mean-field approximation. We 
include many-particle (Coulomb and exchange) interaction effects on the
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include many-particle (Coulomb and exchange) interaction effects on the 
current. 



3.3.- Transient current

Transient simulation for a RTD in the NDC region for a step voltatge:g p g

,
1( ) lim ( )
·

g h
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N N

g hN N
I t I t

N N
   Non-ergodic system (ensemble average):
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[F.Traversa, IEEE TED  (2011)]

, 1 1·g hN N g hg hN N
 



2.2.3.- Our quantum Monte Carlo algorithm:  current fluctuations

current  noise simulation: superpoissonian and subpoissonian Fano factor
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3.- Conclusions and future work

B I T L LE S
The many

Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures

Its ability to deal with many-particle Coulomb and exchange correlations:The many 
body problem

Its ability to provide all moments of the current distribution (DC,AC, Noise):Time-dependent 
correlations

Computational burden: 

F h l t ( i 100 200 l t )For each electron (maximum 100-200 electrons),
a 3D Poisson equation and a 1D time-dependent Schrodinger equation
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3.- Conclusions and future work

The BITLLES code: 

More than 15000 FORTRAN lines.

It has also a 3000 C++ lines for a
(Windows, MAC and Linux compatible)( , p )
user friendly environment to design an
verify the simulated electronic structures.

Simulation time: 

One-two days for the complete I-V curve (DC, AC and noise) of a
simulation box of hundred of electrons with a cluster of 40 Intel Xeon CPUs
at 2 7GHz
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at 2.7GHz



3.- Conclusions and future work

Other works

A k l d

Photoionization with strong lasers
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