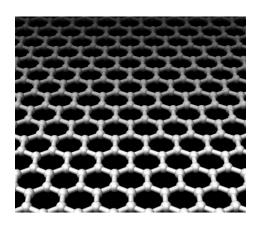
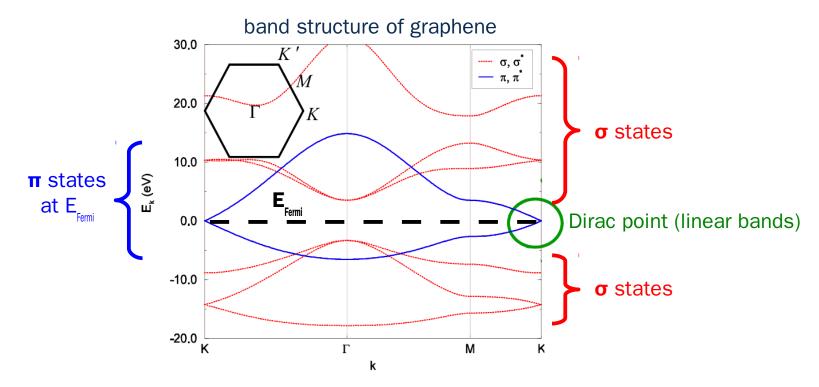
Fakultät Maschinenwesen, Institut für Werkstoffwissenschaft, Professur Materialwissenschaft und Nanotechnik

Graphene edge magnetism for spintronics applications: Dream or Reality?

<u>Jens Kunstmann</u>¹, Cem Özdogan², Alexander Quandt³, Holger Fehske⁴, Hâldun Sevinçli¹, Gianaurelio Cuniberti^{1,5}


- 1 Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Germany
- 2 Department of Materials Science and Engineering, Çankaya University, Ankara, Turkey
- 3 School of Physics and DST/NRF Centre of Excellence In Strong Materials, University of the Witwatersrand, South Africa
- 4 Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Germany
- 5 Division of IT Convergence Engineering, POSTECH, Pohang, Republic of Korea


Introduction

Graphene

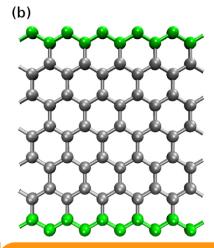
- single atomic layer of carbon with hexagonal structure
- Ideal 2D system
- Electronic structure:

```
sp<sup>2</sup> = π states (out of plane)
+ σ states (in plane)
```




Introduction

Graphene nanoribbons (GNRs)

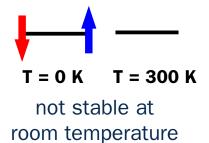

- a graphene nanobibbon (GNR) is a graphene strip of finite width W and infinite length
- 1D system
- can be fabricated in the lab (since 2007)

armchair GNR (AGNR)

semiconducting

zigzag GNR (ZGNR)

- System has magnetic **edge states**
- antiferromagnetic semiconductor


Results

Overview

1. magnetic **edge states** are unlikely to exist

2. Even if they exist, the **edge magnetism** is not stable at room temperature

J. Kunstmann, C. Özdogan, A. Quandt, H. Fehske, Phys. Rev. B 83, 045414 (2011).

Methods

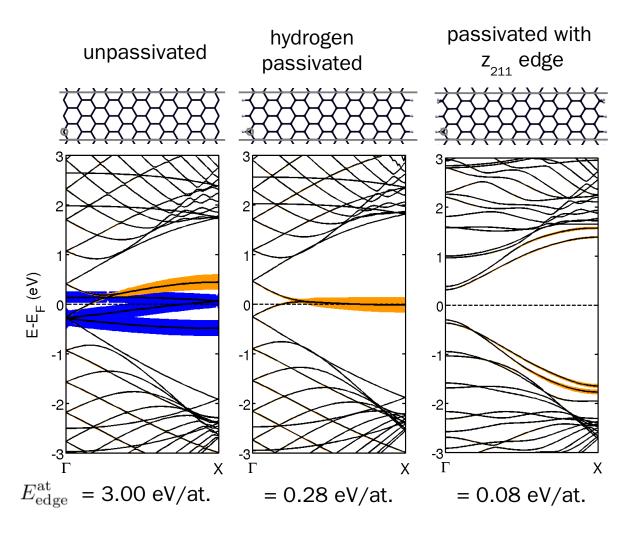
Method: Density Functional Theory (DFT)

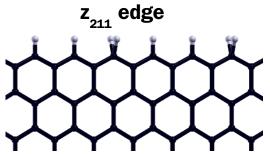
Exchange-correlation: GGA (PW91)

Basis set: PAW (pseudopotentials + plane waves)

Code: VASP

• **edge energy** = enthalpy of the virtual reaction

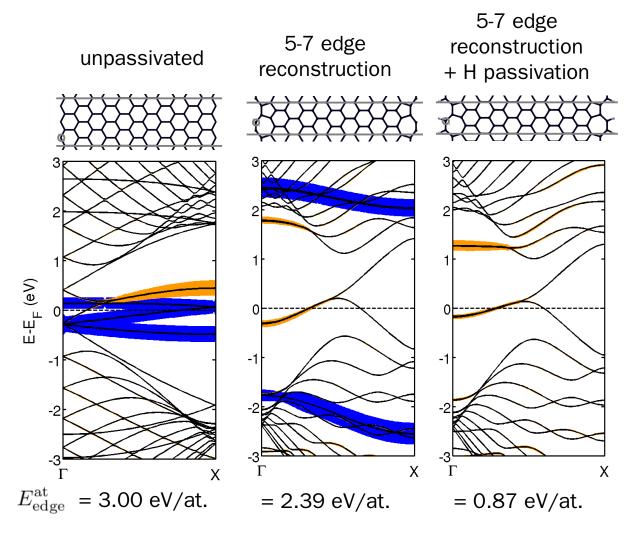

graphene +
$$N_{\rm H}/2~{\rm H_2} \longrightarrow {\rm ZGNR}$$


$$E_{\rm edge}^{\rm at} = (E_{\rm tot}^{\rm ZGNR} - N_{\rm C} E_{\rm coh}^{\rm graphene} - N_{\rm H} E_{\rm coh}^{\rm H_2}) / N_{\rm C}^{\rm edge}$$

Results

1. Stability of graphene edge states

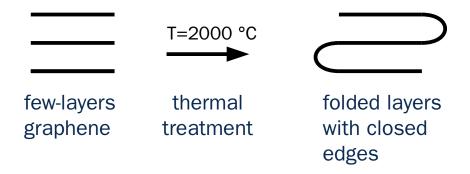
1. Stability of graphene edge states Edge passivation



Wassmann, PRL **101**, 096402 (2008).

- z₂₁₁ edge is the most stable edge that is known
- semiconducting
- no edge states
- non-magnetic

1. Stability of graphene edge states Edge reconstruction


5-7 edge reconstruction

Koskinen, PRL 101, 115502 (2008).

- only moderate stability of the 5-7 edge reconstruction
- edge states but no flat bands
- metallic
- non-magnetic
- experimentally observedKoskinen, PRB 90, 073401 (2009).

1. Stability of graphene edge states Edge closure

- no edges / edge states / edge magnetism
- experimentally observed Liu, Suenaga, Harris, Iijima, PRL **102**, 015501 (2009).

1. Stability of graphene edge states Resume

- in real graphene systems the edges are likely to be passivated, reconstructed, or closed
 → no / very little magnetic edge states
- magnetic edge states are unlikely to exist

Results

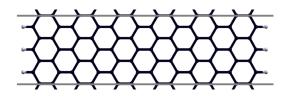
2. Stability of graphene edge magnetism

1. Stability of graphene edge magnetism

Stable magnets

- Magnetic DFT calculations can find different magnetic states of one system
 - NM non-magnetic
 - FM ferromagnetic
 - AFM antiferromagnetic
 - other
- Different magnetic states are compared via the magnetic stabilization energy

$$\Delta E_{\text{mag}} = (E_{\text{tot}} - E_{\text{tot}}^{\text{GS}})/N_{\text{MA}},$$


System	State	$\frac{\Delta E_{\text{mag}}}{(\text{meV/at})}$	$T_{ m c}^{ m max}$ (K)	$T_{ m c}$ (K)
Fe	NM FM	395 0	4585	1043
NiO	NM FM AFM	244 237 0	2745	525

• upper bound for the **critical temperature** $T_{
m c}^{
m max}$ is

$$\Delta E_{\mathrm{mag}}^{\mathrm{GS+1}} = \mathrm{k} T_{\mathrm{c}}^{\mathrm{max}}$$

1. Stability of graphene edge magnetism Ideal zigzag graphene nanoribbons

let's assume that ideal zigzag graphene nanoribbons (ZGNRs) can be made

System	State	$\frac{\Delta E_{\text{mag}}}{(\text{meV/at})}$	$T_{ m c}^{ m max}$ (K)
10-ZGNR+H	NM FM	27 6	
	AFM	0	70
12-ZGNR+H	FM	29	46
	AFM	0	

- No stable magnetism at room temperature
 - → no spintronics applications of edge magnetism

Summary

1. magnetic **edge states** are unlikely to exist

2. Even if they exist, the **edge magnetism** is not stable at room temperature

J. Kunstmann, C. Özdogan, A. Quandt, H. Fehske, Phys. Rev. B 83, 045414 (2011).

Thanks for your attention

