Applications of the $O(N^3)$ Hedin's GW

Peter Koval, Dietrich Foerster, Daniel Sanchéz-Portal

Bilbao 14/04/2011

Outline

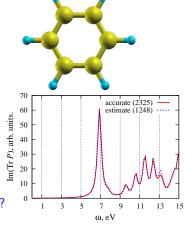
- ▶ Parameter calculations (+view on the methods)
- ▶ DOS, HOMO & LUMO
- ▶ HPC features
- ► Conclusion & Outlook

Size of dominant products basis

 Basis of dominant products is distinguishing feature¹

$$f^a(\mathbf{r})f^b(\mathbf{r}) = V_\mu^{ab}F^\mu(\mathbf{r})$$

- Each pair of atoms has its own (sub)set of $F^{\mu}(\mathbf{r})$ and vertex V^{ab}_{μ}
- Within a given pair, $F^{\mu}(\mathbf{r})$ are optimal (\perp with respect to Coulomb metric)
- ▶ How many $F^{\mu}(\mathbf{r})$ do we need in total ?



TDDFT: optical absorption

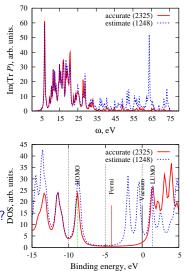
¹D. Foerster, J. Chem. Phys. **128**, 34108 (2008).

Size of dominant products basis

Basis of dominant products is distinguishing feature¹

$$f^a(\mathbf{r})f^b(\mathbf{r}) = V_\mu^{ab}F^\mu(\mathbf{r})$$

- Each pair of atoms has its own (sub)set of $F^{\mu}(\mathbf{r})$ and vertex V_{μ}^{ab}
- Within a given pair, $F^{\mu}(\mathbf{r})$ are optimal Within a given pair, $F^{\mu}(\mathbf{r})$ are optimal (\perp with respect to Coulomb metric) $\frac{1}{2}$ How many $F^{\mu}(\mathbf{r})$ do we need in total ?
- ▶ We need more of them in *GW*.



¹D. Foerster, J. Chem. Phys. **128**, 34108 (2008).

Non-local compression: method

Response function reads in products basis

$$\chi^0_{\mu\nu} = \sum_{E<0,F>0} rac{V^{EF}_{\mu}V^{EF}_{
u}}{\omega\pm(E-F)+\mathrm{i}arepsilon}, ext{ where } V^{EF}_{\mu} = X^E_aV^{ab}_{\mu}X^F_b$$

▶ Electron-hole pairs *EF* built a natural basis for χ^0 , but redundand !

²D. Foerster, P. Koval, D. Sanchez-Portal, arXiv:1101.2065.

Non-local compression: method

Response function reads in products basis

$$\chi^0_{\mu\nu} = \sum_{E < 0.F > 0} \frac{V^{EF}_{\mu}V^{EF}_{\nu}}{\omega \pm (E - F) + \mathrm{i}\varepsilon}, \text{ where } V^{EF}_{\mu} = X^E_a V^{ab}_{\mu} X^F_b$$

- ▶ Electron-hole pairs *EF* built a natural basis for χ^0 , but redundand !
- ightharpoonup \Rightarrow form linear combinations of $V_{\mu}^{\it EF}$ & choose important ones²

²D. Foerster, P. Koval, D. Sanchez-Portal, arXiv:1101.2065.

Non-local compression: method

Response function reads in products basis

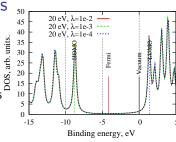
$$\chi^0_{\mu\nu} = \sum_{E<0.F>0} \frac{V^{EF}_{\mu}V^{EF}_{\nu}}{\omega \pm (E-F) + \mathrm{i}\varepsilon}, \text{ where } V^{EF}_{\mu} = X^E_a V^{ab}_{\mu} X^F_b$$

- lacktriangle Electron-hole pairs EF built a natural basis for χ^0 , but redundand !
- ightharpoonup \Rightarrow form linear combinations of $V_{\mu}^{\it EF}$ & choose important ones²
 - ▶ Build a (Coulomb) metric $g^{\textit{EF},\textit{E'F'}} = V_{\mu}^{\textit{EF}} v^{\mu\nu} V_{\nu}^{\textit{E'F'}}$;
 - ▶ Diagonalize $g^{EF,E'F'}X_{E'F'}^{\lambda} = \lambda X_{EF}^{\lambda}$ & choose threshold for λ .
 - lacksquare Build linear combinations of $V^{EF}_{\mu}\colon Z^{\lambda}_{\mu}=V^{EF}_{\mu}X^{\lambda}_{EF}$

²D. Foerster, P. Koval, D. Sanchez-Portal, arXiv:1101.2065.

Non-local compression: parameters

- ▶ Only subset of EF's can be diagonalized otherwise $O(N^6)$ complexity
- ▶ We choose low-energy difference *EF*'s pairs $\Rightarrow |E F| < E_{max}$
- \blacktriangleright #EF's can be kept O(N)
- ► Threshold for eigenvalues λ . Can we get out with $\#\lambda$'s less $\#F^{\mu}(\mathbf{r})$?
- ► Typically # λ 's can be $N_{\rm prod}/10$ and more! (1000x acceleration in inversion for W)



E_{max}	$\lambda = 10^{-2}$	$\lambda = 10^{-3}$	$\lambda = 10^{-4}$		
eV					
10	2.50 (33)	2.48 (37)	2.48 (39)		
20	1.39 (96)	1.41 (133)	1.42 (171)		
40	1.43 (132)	1.43 (192)	1.43 (279)		

The electron affinity of benzene, eV.

In brackets $\#\lambda$'s

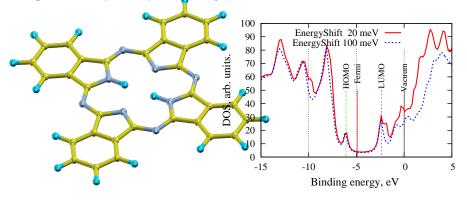
compare with $\#F^{\mu}(r)=2325$

Examples: rings

Picture	IP, eV	EA, eV	N_{ω}	Runtime, s	
	8.82	-1.43			
>	(9.25)	(-1.12)	64	977	
Y	7.58	-0.15			
	(8.14)	(-0.19)	64	2075	
-					
A A A A A A	6.88	0.79			
III	(7.44)	(0.530)	64	8434	

LDA G_0W_0 correctly predicts anthracene to be an aceptor while benzene and naphthalene to be donor. Dynamical part of $\Sigma(\omega)$ is responsible for this change \Rightarrow correlation makes the difference.

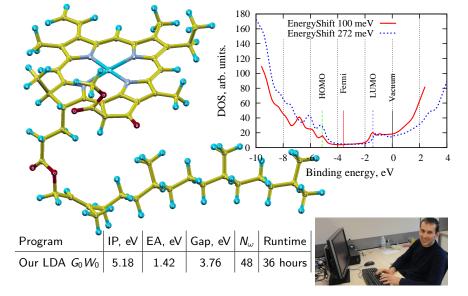
Larger examples: phthalocyanine



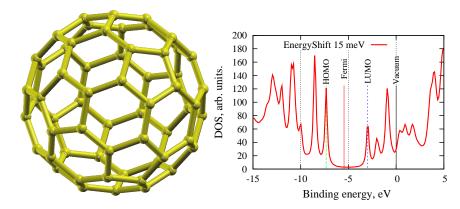
Program	IP, eV	EA, eV	Gap, eV	N_{ω}	Runtime	One core of Intel®Core TM 2
Our LDA G_0W_0	6.08	2.38	3.71	64	22 hours	Quad CPU Q9400 2.66GHz
Xavier Blase ³	6.01	2.02	3.99			Cache 3MB/RAM 4GB

³X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B **83**, 115103 (2011).

Larger examples: chlorophyll-a



Larger examples: fullerene C₆₀



Source	IP, eV	EA, eV	Gap, eV	N_{ω}	Runtime
Our LDA G ₀ W ₀	7.33	2.97	4.36	128	26 hours
Experimental	7.58	2.65	4.93		

8 cores of Intel®E5520 2.27GHz, Cache 8M / DDR3 RAM 12 GB

Fast convolutions in time-by-time fashion

 Response and self-energy are computed via their spectral functions

$$\chi_{\mu\nu}^{0}(\omega) = \int \frac{a_{\mu\nu}(s)}{\omega - s + i\varepsilon} ds$$

► Spectral functions are formulated as convolutions ⇒ FFT

$$a_{\mu
u}(s) =
ho_{ab}(\omega) V_{\mu}^{\,bc} \otimes
ho_{ad}(\omega) V_{
u}^{\,dc}$$

Fast convolutions in time-by-time fashion

 Response and self-energy are computed via their spectral functions

$$\chi_{\mu\nu}^{0}(\omega) = \int \frac{a_{\mu\nu}(s)}{\omega - s + i\varepsilon} ds$$

Spectral functions are formulated as convolutions ⇒ FFT

$$a_{\mu
u}(s) =
ho_{ab}(\omega) V_{\mu}^{\,bc} \otimes
ho_{ad}(\omega) V_{
u}^{\,dc}$$

- ► Tensor calcul is non-negligeable! ⇒ Speedup by BLAS desirable
- ▶ Tensor calcul in time domain simplifies and speedups the program

Algorithm: Calculation of response in time-by-time fashion $\rho_{ab}(t) = \mathsf{FFT}\rho_{ab}(\omega)$ for $t = 1 \dots N_t$ do $a_{\mu\nu}(t) = \rho_{ab}(t) V_\mu^{bc} \cdot \rho_{ad}(t) V_\nu^{dc}$ endfor

Fast convolutions in time-by-time fashion

 Response and self-energy are computed via their spectral functions

$$\chi_{\mu\nu}^{0}(\omega) = \int \frac{a_{\mu\nu}(s)}{\omega - s + i\varepsilon} ds$$

Spectral functions are formulated as convolutions ⇒ FFT

endfor

$$a_{\mu
u}(s) =
ho_{ab}(\omega) V_{\mu}^{\,bc} \otimes
ho_{ad}(\omega) V_{
u}^{\,dc}$$

- ► Tensor calcul is non-negligeable! ⇒ Speedup by BLAS desirable
- ▶ Tensor calcul in time domain simplifies and speedups the program

Algorithm: Calculation of response in time-by-time fashion
$$\rho_{ab}(t) = \text{FFT}\rho_{ab}(\omega)$$
 for $t=1\dots N_t$ **do**
$$a_{\mu\nu}(t) = \rho_{ab}(t)V_{\mu}^{bc} \cdot \rho_{ad}(t)V_{\nu}^{dc}$$

OpenMP parallelization of the time loop is straigthforward

Partially allocatable/deallocatable storage

- ▶ Time-by-time fast, but needs storage of both $a_{\mu\nu}(s)$ and $\chi_{\mu\nu}(\omega)$
- **▶** ...?

Partially allocatable/deallocatable storage

- ▶ Time-by-time fast, but needs storage of both $a_{\mu\nu}(s)$ and $\chi_{\mu\nu}(\omega)$
- **...?**
- ▶ Structures with allocatable fields allow to circumvent the drawback

```
Algorithm: Usage of partially allocatable/deallocatable storage
Store a_{\mu\nu}(t) into a structure a(\nu,t)% array(\mu)
for \nu = 1 \dots N_{prod} do
    \chi^{\text{auxiliary}}(\omega, \mu) = \text{Cauchy}(a(\nu, t)\% array(\mu))
    deallocate part of spectral function: a(\nu, t)% array
    allocate part of response function: \chi^0(\nu,\omega)% array(\mu)
    \chi^0(\nu,\omega)% array(\mu) = \chi^{\text{auxiliary}}(\omega,\mu)
endfor
```

Conclusion & Outlook

!!! GW with dominant products is a competitive GW approach

Conclusion & Outlook

- !!! GW with dominant products is a competitive GW approach
- ▶ Reducing the number of dominant products
- ▶ Developing alternatives to current basis of dominant products

Conclusion & Outlook

- !!! GW with dominant products is a competitive GW approach
- ▶ Reducing the number of dominant products
- ▶ Developing alternatives to current basis of dominant products
- Extension to periodical systems (large unit cells)
- ▶ BSE with dominant products

Acknowledgments

- ► James Talman (London, Canada)
- ► Xavier Blase (Grenoble, France)
- Björn Lange (Düsseldorf, Germany)

\$\$ Financial support from the Consejo Superior de Investigaciones Científicas (CSIC), the Basque Departamento de Educación, UPV/EHU (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovación (Grants No. FIS2007-6671-C02-02 and FIS2010-19609-C02-02) and, the ETORTEK program funded by the Basque Departamento de Industria and the Diputación Foral de Guipuzcoa.

Thank you for your attention!

Second window technique: method

... allows for rough resolution in high energy.

• Response $\chi_0(\omega)$ via its spectral function a(s)

$$\chi_0(\omega) = \int_{-\infty}^{\infty} \frac{a(s) ds}{\omega - s + i\varepsilon}$$

 We need a(s) at high frequencies even low frequency response is computed

$$\int_{-\infty}^{-\omega_{\max}} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon} + \int_{-\omega_{\max}}^{+\omega_{\max}} d\lambda \frac{a(\lambda)}{\omega - \lambda + i\varepsilon} + \int_{\omega_{\max}}^{+\infty} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon}$$

$$\int_{-\infty}^{-\omega_{\max}} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon} + \int_{-\omega_{\max}}^{+\omega_{\max}} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon}$$
Nonresonant range

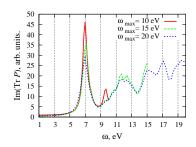
Resonant range

Nonresonant range

Second window technique: parameters

...allows for rough resolution in high energy.

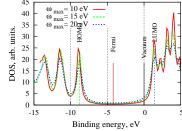
... Response was never a problem for second window technique. . .



Second window technique: parameters

...allows for rough resolution in high energy.

- ... Response was never a problem for second window technique...
- ightharpoonup . . . GW needed more attention: different arepsilon

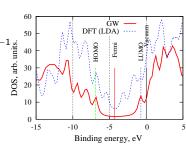


$$\int_{-\infty}^{-\omega_{\text{max}}} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon_2} + \int_{-\omega_{\text{max}}}^{+\omega_{\text{max}}} d\lambda \frac{a(\lambda)}{\omega - \lambda + i\varepsilon_1} + \int_{\omega_{\text{max}}}^{+\infty} d\lambda \frac{b(\lambda)}{\omega - \lambda + i\varepsilon_2}$$

Dyson equation

$$G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1} \stackrel{\circ}{\underset{\exists}{\text{el}}} \ \stackrel{\circ}{\underset{\exists}{\text{el}}}$$
 Density of states

$$\rho(\omega) = S^{ab} \mathrm{Im} \, G_{ab}(\omega)$$



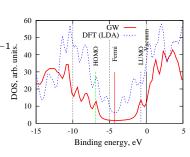
Dyson equation

$$G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)
ight)^{-1} rac{\dot{S}}{g} rac{\dot{S}}{g}$$
 Density of states

$$\rho(\omega) = S^{ab} \operatorname{Im} G_{ab}(\omega)$$

Density of charge

$$n(\mathbf{r}) = \int_{-\infty}^{0} \operatorname{Im} G_{ab}(\omega) f^{a}(\mathbf{r}) f^{b}(\mathbf{r})$$



Dyson equation

$$G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$$
 gian for Signature $G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$ Signature $G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$

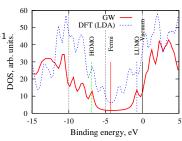
$$\rho(\omega) = S^{ab} \operatorname{Im} G_{ab}(\omega)$$

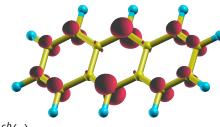
Density of charge

$$n(\mathbf{r}) = \int_{-\infty}^{0} \operatorname{Im} G_{ab}(\omega) f^{a}(\mathbf{r}) f^{b}(\mathbf{r})$$

Partial density of charge

$$n(\mathbf{r}, \omega_1, \omega_2) = \int_{\omega_2}^{\omega_2} \operatorname{Im} G_{ab}(\omega) f^a(\mathbf{r}) f^b(\mathbf{r})$$





GWA HOMO

Dyson equation

$$G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$$
 gian for Signature $G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$ Signature $G_{ab}(\omega) = \left(S^{ab}\omega + H^{ab} + \Sigma^{ab}(\omega)\right)^{-1}$

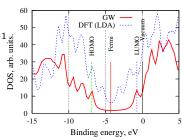
$$\rho(\omega) = S^{ab} \operatorname{Im} G_{ab}(\omega)$$

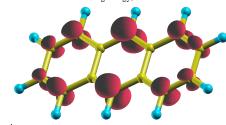
Density of charge

$$n(\mathbf{r}) = \int_{-\infty}^{0} \operatorname{Im} G_{ab}(\omega) f^{a}(\mathbf{r}) f^{b}(\mathbf{r})$$

Partial density of charge

$$n(\mathbf{r}, \omega_1, \omega_2) = \int_{\omega_1}^{\omega_2} \operatorname{Im} G_{ab}(\omega) f^a(\mathbf{r}) f^b(\mathbf{r})$$





DFT HOMO

Optimization of atomic orbitals

- Radial shapes of localized orbitals can be optimized against a plane-wave (PW) calculation⁴
- Minimization of spillage gives better atomic orbitals

Spillage =
$$\frac{1}{N_{PW}} \sum_{E} n_E \langle \Psi_E^{PW} | 1 - P | \Psi_E^{PW} \rangle$$

P is a projector onto atomic orbitals $P=|f^{a}
angle(S^{ab})^{-1}\langle f^{b}|$

Orbitals	IP, eV	EA, eV	gap, eV
SIESTA split 3 meV	8.82	-1.44	10.0
Björn Lange (Quamols)	8.96	-1.02	9.98
Experiment	9.25	-1.22	10.47

⁴B. Lange, Ch. Freysoldt, J. Neugebauer, Phys. Rev. B submitted (2010).